n-dimensional valuation - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

n-dimensional valuation - перевод на Английский

Valuation domain; Center (valuation ring)

n-dimensional valuation      

математика

n-мерное нормирование

marketability         
PROCESS OF DETERMINING ECONOMIC VALUE OF AN OWNER'S INTEREST
Corporate valuation; Enterprise valuation; Marketability; Discount for lack of marketability; Total Beta
marketability noun товарность, пригодность для продажи
hypersphere         
  • A set of points drawn from a uniformly distribution on the surface of a unit 2-sphere, generated using Marsaglia's algorithm.
  • 0,0,0,1}} have an infinite radius (= straight line).
  • ''n''}} dimensions.
GENERALIZATION OF THE ORDINARY SPHERE TO SPACES OF ARBITRARY DIMENSION
Hyperspherical coordinates; Hyper sphere; Area of the n-sphere; 4-sphere; Volume of the n-sphere; Four-dimensional sphere; Circle (topology); Hypersphere; 7-sphere; 0-sphere; N sphere; N-spheres; 5-sphere; 6-sphere; 8-sphere; 9-sphere; 10-sphere; N-Sphere; N‑sphere; Hyperspheres; Nsphere; D-sphere; Unit hypersphere; Hyperspherical; Hyperspherical coordinate system; Octahedral sphere; S^n; 4d Sphere

['haipəsfiə]

общая лексика

гиперсфера

гиперсферический

гипершар

существительное

математика

гиперсфера

гипершар

Определение

ДИМЕТИЛФОРМАМИД
(CH3)2NCHO, бесцветная жидкость, tкип 153 °С. Растворитель в производстве синтетических волокон, красителей, при выделении ацетилена из газовых смесей.

Википедия

Valuation ring

In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D.

Given a field F, if D is a subring of F such that either x or x−1 belongs to D for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F. Since F in this case is indeed the field of fractions of D, a valuation ring for a field is a valuation ring. Another way to characterize the valuation rings of a field F is that valuation rings D of F have F as their field of fractions, and their ideals are totally ordered by inclusion; or equivalently their principal ideals are totally ordered by inclusion. In particular, every valuation ring is a local ring.

The valuation rings of a field are the maximal elements of the set of the local subrings in the field partially ordered by dominance or refinement, where

( A , m A ) {\displaystyle (A,{\mathfrak {m}}_{A})} dominates ( B , m B ) {\displaystyle (B,{\mathfrak {m}}_{B})} if A B {\displaystyle A\supseteq B} and m A B = m B {\displaystyle {\mathfrak {m}}_{A}\cap B={\mathfrak {m}}_{B}} .

Every local ring in a field K is dominated by some valuation ring of K.

An integral domain whose localization at any prime ideal is a valuation ring is called a Prüfer domain.

Как переводится n-dimensional valuation на Русский язык